Effect of Different Surface Microstructures in the Thermally Induced Self-Propulsion Phenomenon

Author:

Otic ClintORCID,Yonemura ShigeruORCID

Abstract

In micro/nano-scale systems where the characteristic length is in the order of or less than the mean free path for gas molecules, an object placed close to a heated substrate with a surface microstructure receives a propulsive force. In addition to the induced forces on the boundaries, thermally driven flows can also be induced in such conditions. As the force exerted on the object is caused by momentum brought by gas molecules impinging on and reflected at the surface of the object, reproducing molecular gas flows around the object is required to investigate the force on it. Using the direct simulation Monte Carlo (DSMC) method to resolve the flow, we found that by modifying the conventional ratchet-shaped microstructure into different configurations, a stronger propulsive force can be achieved. Specifically, the tip angle of the microstructure is an important parameter in optimizing the induced force. The increase in the propulsive force induced by the different microstructures was also found to depend on the Knudsen number, i.e., the ratio of the mean free path to the characteristic length and the temperature difference between the heated microstructure and the colder object. Furthermore, we explained how this force is formed and why this force is enhanced by the decreasing tip angle, considering the momentum brought onto the bottom surface of the object by incident molecules.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3