Deep Bayesian-Assisted Keypoint Detection for Pose Estimation in Assembly Automation

Author:

Shi Debo1,Rahimpour Alireza2ORCID,Ghafourian Amin3ORCID,Naddaf Shargh Mohammad Mahdi2ORCID,Upadhyay Devesh2ORCID,Lasky Ty A.3ORCID,Soltani Iman3ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of California Davis, Davis, CA 95616, USA

2. Greenfield Labs, Ford Motor Company, Palo Alto, CA 94304, USA

3. Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA

Abstract

Pose estimation is crucial for automating assembly tasks, yet achieving sufficient accuracy for assembly automation remains challenging and part-specific. This paper presents a novel, streamlined approach to pose estimation that facilitates automation of assembly tasks. Our proposed method employs deep learning on a limited number of annotated images to identify a set of keypoints on the parts of interest. To compensate for network shortcomings and enhance accuracy we incorporated a Bayesian updating stage that leverages our detailed knowledge of the assembly part design. This Bayesian updating step refines the network output, significantly improving pose estimation accuracy. For this purpose, we utilized a subset of network-generated keypoint positions with higher quality as measurements, while for the remaining keypoints, the network outputs only serve as priors. The geometry data aid in constructing likelihood functions, which in turn result in enhanced posterior distributions of keypoint pixel positions. We then employed the maximum a posteriori (MAP) estimates of keypoint locations to obtain a final pose, allowing for an update to the nominal assembly trajectory. We evaluated our method on a 14-point snap-fit dash trim assembly for a Ford Mustang dashboard, demonstrating promising results. Our approach does not require tailoring to new applications, nor does it rely on extensive machine learning expertise or large amounts of training data. This makes our method a scalable and adaptable solution for the production floors.

Funder

Ford Greenfield Labs

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards cognition-augmented human-centric assembly: A visual computation perspective;Robotics and Computer-Integrated Manufacturing;2025-02

2. Research on 3C compliant assembly strategy method of manipulator based on deep reinforcement learning;Computers and Electrical Engineering;2024-11

3. Error-Proofing Applications with Automated Image Recognition;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3