Strain Rate Dependence of Twinning Behavior in AZ31 Mg Alloys

Author:

Xu Jing1,Guan Bo1,Zhao Xiaojun2,Fu Rui3,Hu Qiang1,Liu Chaoqiang4

Affiliation:

1. Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029, China

2. Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China

3. International Joint Laboratory for Light Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China

4. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Abstract

This study investigates the impact of strain rate on the twinning process (i.e., twin nucleation, twin propagation, and twin growth) and associated mechanical behavior during compression along the normal direction (ND) and transverse direction (TD) of a rolled AZ31 Mg plate at a range of strain rates from 0.00005 s−1 to 2500 s−1. The findings reveal that the yield strength is insensitive to strain rates below 0.05 s−1 during both ND and TD compression tests, while at higher strain rates of 2500 s−1, the yield strength increases under both loading conditions. Interestingly, the TD-compressed sample exhibits a larger yield plateau at a strain rate of 2500 s−1, attributed to an increased activation of {101¯2} twins. Further examination of the microstructure reveals that the twinning process is highly dependent on the strain rate. As the strain rate increases, twin nucleation is promoted, leading to a higher twin boundary density. In contrast, at lower strain rates, twin nucleation is restrained, and the external strain is mainly accommodated by twin growth, which results in higher area fractions of twinned regions.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Jiangxi Academy of Sciences

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3