The Influence of Interfacial Thermal Conductance on the Tensile Strength of a Sn-Mg Solder Alloy

Author:

Cruz Clarissa1ORCID,Soares Thiago2,Barros André2ORCID,Garcia Amauri2,Cheung Noé2ORCID

Affiliation:

1. Department of Production Engineering, Federal University of Ouro Preto—UFOP, João Monlevade 35931-008, MG, Brazil

2. Department of Manufacturing and Materials Engineering, University of Campinas—UNICAMP, Campinas 13083-860, SP, Brazil

Abstract

Sn-Mg alloys are potential Pb-free solder options. However, their mechanical strength and interfacial characteristics with electronic substrates remain barely understood. This study focuses on the interfacial heat transfer aspects, microstructure, and tensile strength of a Sn-2.1wt.%Mg alloy. Samples with various thermal histories were produced using a directional solidification apparatus. In these experiments, a Sn-2.1wt.%Mg alloy was solidified on Cu and Ni substrates, which are of interest in the electronics industry. Mathematical modeling was then employed, allowing for the determination of the overall and interfacial heat transfer coefficients (hov, and hi, respectively). The results show that the Ni substrate exhibits higher interfacial thermal conductance with the Sn-2.1wt.%Mg alloy compared to the Cu substrate, as indicated by the higher hi profiles. This fact occurs mainly due to their metallurgical interaction, resulting in a stronger bond with the presence of Sn-Ni-rich intermetallics at the interface. Finally, experimental equations based on the Hall–Petch relationship are proposed to describe how the refinement of the fibrous spacing of the Mg2Sn interphase (λG) and an increase in hi enhance both yield and ultimate tensile strengths.

Funder

FAPESP—São Paulo Research Foundation, Brazil

CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil

FAEPEX/UNICAMP-Fundo de Apoio ao Ensino, à Pesquisa e à Extensão

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3