Hot Rolling on Microstructure and Properties of NbHfTiVC0.1 Refractory High-Entropy Alloy

Author:

Qiu Haochen123,Tao Shutian123,Jiang Wei13,Yan Xuehui13,Wu Shuaishuai13,Guo Shengli123,Zhu Baohong123,Wang Dongxin4

Affiliation:

1. GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China

2. General Research Institute for Nonferrous Metals, Beijing 100088, China

3. China GRINM Group Co., Ltd., Beijing 100088, China

4. State Key Laboratory of Special Rare Metal Materials, Northwest Rare Metal Materials Research Institute Ningxia Co., Ltd., Shizuishan 753000, China

Abstract

NbHfTiVC0.1 refractory high-entropy alloy (RHEA) exhibits excellent comprehensive mechanical properties and demonstrates great potential for applications. However, the mechanical properties need to be improved further. In this work, hot rolling on NbHfTiVC0.1 RHEA at temperatures of 650 °C, 850 °C, and 1050 °C, with total reductions of up to 30%, 50%, 70%, and 80%, was conducted. The microstructure and mechanical property evolution of the samples were further investigated. The hot-rolled samples at 650 °C and 850 °C exhibit a composition consisting of BCC, carbide, and Laves phases, whereas the samples rolled at 1050 °C only consist of BCC and carbide phases. The 650-80 sample displays the highest ultimate tensile strength (1354 MPa), and the 1050-80 sample demonstrates the highest elongation (16%). The highest strength observed in the 650 °C-80% sample can be attributed to the presence of fractured and refined carbides, fine-grains, and the hindrance of dislocation slip by the fine Laves phase. At a higher rolling temperature (1050 °C), the Laves phase disappears, resulting in a reduction in strength but an increase in plasticity. Furthermore, the dislocation slipping mechanism within the BCC matrix also contributes positively to plastic deformation, leading to a notable increase in ductility for the 1050 °C-80% sample. These research findings provide valuable insights into enhancing the strength and ductility simultaneously of NbHfTiVC0.1 RHEA through hot rolling.

Funder

the Innovation Foundation of GRIMAT Engineering Institute

Youth Fund Project of GRINM

the State Key Laboratory of Special Rare Metal Materials

Northwest Rare Metal Materials Research Institute Ningxia Co., Ltd.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3