Influence of the Chemical Composition on the Phase Stability and Mechanical Properties of Biomedical Ti-Nb-Mo-Zr Alloys

Author:

Nunes Aline Raquel Vieira1ORCID,Borborema Sinara2,Araújo Leonardo Sales1,Rodrigues Taissa Zangerolami Lopes1,Malet Loïc3,Dille Jean3,de Almeida Luiz Henrique1ORCID

Affiliation:

1. Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil

2. Department of Mechanical and Energy, Rio de Janeiro State University, Resende 27537-000, RJ, Brazil

3. Engineering, Characterization, Synthesis and Recycling (4MAT), Université Libre de Bruxelles—ULB, 1050 Brussels, Belgium

Abstract

A new generation of titanium alloys with non-toxic, non-allergenic elements and lower Young’s modulus (YM) have been developed, presenting modulus values close to that of bone. In titanium alloys, the value of the Young’s modulus is strongly dependent on the chemical composition. Young’s modulus also depends on the present phases and on the crystallographic texture related to the thermomechanical processing. A lower YM is normally attributed to the formation of the α″ phase into the β matrix, but there is no consensus for this assumption. In the present work, four alloys were designed and melted, based on the Ti-Nb-Mo-Zr system and heat-treated to favor the formation of the β phase. The alloys were produced by arc melting under argon atmosphere and heat-treated at 1000 °C for 24 h under high vacuum, being subsequently quenched in water to room temperature. Alloys were then characterized by optical microscopy (OM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Young’s modulus was determined by the impulse excitation technique and Vickers microhardness. The purpose of the study was to define an optimal chemical composition for the further production on a semi-industrial scale of a new Ti-Nb-Mo-Zr alloy for orthopedic implant manufacturing. The results showed that all of the four studied alloys are potential candidates for biomedical applications. Among them, the Ti-24Nb-4Mo-6Zr alloy has the lowest Young’s modulus and the highest microhardness. So, this alloy presents the highest HV/YM ratio, which is a key indicator in order to evaluate the mechanical performance of metallic biomaterials for orthopedic implants.

Funder

Brazilian agencies CNPq

FAPERJ

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3