Affiliation:
1. Key Laboratory for Ecological Metallurgy of Multimetallic Ores (Ministry of Education), Shenyang 110819, China
2. School of Metallurgy, Northeastern University, Shenyang 110819, China
Abstract
A comprehensive understanding of the structural impact of composition is crucial in designing converter slag to optimize its rheological and surface properties during the smelting process. In this study, glassy CaO-SiO2-FexO samples with varying CaO/FexO ratios were prepared to simulate the slag in the initial stage of converter melting. The viscosity and surface tension of the slag at 1300–1600 °C were measured, and the microscopic essence of physical properties was further analyzed using Raman spectroscopy technology. The findings reveal that as CaO replaces FeO, [SiO4]-tetrahedra gradually depolymerize from Q4(Si) to Q0(Si), while [FeO6]-octahedra gradually transform into [FeO4]-tetrahedra, resulting in a decrease in the degree of polymerization of the slag. The slag with a lower degree of polymerization exhibits reduced activation energy of viscous flow and increased surface tension. Therefore, it is of great significance to appropriately control the CaO/FexO ratio in the early stage of smelting to improve the rheological and surface properties of the slag.
Funder
National Natural Science Foundation of China
Open Fund of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization
Fundamental Research Funds for the Central Universities
Northeast University Postdoctoral Foundation
Jianlong Group-Northeastern University Youth Science and Technology Innovation Fund
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献