Development and Performance of High Chromium White Cast Irons (HCWCIs) for Wear–Corrosive Environments: A Critical Review

Author:

Fashu Simbarashe1,Trabadelo Vera1ORCID

Affiliation:

1. High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco

Abstract

There is a huge demand for high-performance materials in extreme environments involving wear and corrosion. High chromium white cast irons (HCWCIs) display better performance than many materials since they are of sufficient hardness for wear protection and can be tailored in chemical compositions to improve corrosion resistance; however, their performance is often still inadequate. This article reviews the chemical composition and microstructure design aspects employed to tailor and develop HCWCIs with combined corrosion and wear resistance. The performance of these alloys under wear and corrosion is reviewed to highlight the influence of these parameters in the industry. Existing challenges and future opportunities, mainly focusing on metallurgical alloy development aspects like chemical composition, casting, and heat treatment design, are highlighted. This is followed by suggestions for potential developments in HCWCIs to improve the performance of materials in these aggressive environments. Many variables are involved in the design to obtain suitable microstructures and matrix composition for wear–corrosion resistance. Computational modeling is a promising approach for optimizing multi-design variables; however, reliable field performance data of HCWCIs in wear–corrosion environments are still inadequate. Quantitative evaluation of the wear–corrosion performance of HCWCIs requires the development of laboratory and field tests using standard conditions like abrasive type and sizes, severity of loading, slurry velocity, pH, and temperature to develop wear–corrosion maps to guide alloy development.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3