Development of Bio-Electrochemical Reactor for Groundwater Denitrification: Effect of Electric Current and Water Hardness

Author:

Ratananikom Khakhanang,Peungtim Prarunchaya,Phuinthiang Patcharaporn,Nakaruk Auppatham,Khanitchaidecha Wilawan

Abstract

Nitrate-nitrogen (NO3-N) contaminating groundwater is an environmental issue in many areas, and is difficult to treat by simple processes. A bio-electrochemical reactor (BER) using copper wire and graphite plate was developed to purify the NO3-N-contaminated groundwater. The low (of 10 mA) and high (of 20 mA) electric currents were applied to the BERs, and various influent hardness levels from 20 to 80 mg/L as CaCO3 due to groundwater characteristics were supplied to clarify the total nitrogen removal efficiency and NO3-N removal mechanisms. In the BER-10, the bio-electrochemical reactions caused 85% of total nitrogen to be removed through heterotrophic and autohydrogenotrophic denitrification in the suspended sludge and biofilm. However, the chemical deposit occurring at the cathode from water hardness affected the decreasing denitrification performance; 12.6% of Mg and 8.8% of Ca elements were observed in the biofilm. The enhancement of electrochemical reactions in the BER-20 caused integrating electrochemical and bio-electrochemical reactions; the NO3-N was electrochemically reduced to NO2-N, and it was further biologically reduced to N2. A better total nitrogen removal of 95% was found; although, a larger deposit of Mg (22.8%) and Ca (10.8%) was observed. The relatively low dissolved H2 in the BER-20 confirmed that the deposit affected the decreasing gaseous H2 transfer and inhibition of autohydrogenotrophic denitrification in the suspended sludge. According to the microbial analysis, both heterotrophic and autohydrogenotrophic denitrification were obtained in the suspended sludge of both BERs; Nocadia (26.8%) was the most abundant genus in the BER-10, whereas Flavobacterium (27.1%) and Nocadia (25.0%) were the dominant genera in the BER-20.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3