Reduction and Degradation of Paraoxon in Water Using Zero-Valent Iron Nanoparticles

Author:

Okello Veronica A.ORCID,K’Owino Isaac O.ORCID,Masika Kevin,Shikuku Victor O.ORCID

Abstract

Paraoxon is an emerging organophosphate pollutant that is commonly used as a pesticide and a drug, hence increasing the risk of contamination of water supplies. Its intensive use for vector control has led to pollutions in soil and water. Paraoxon is very toxic, with an LD50 of 2 to 30 mg/kg in rats. It can be metabolized in the body from parathion; thus, exposure can lead to serious health effects. In this study, zero valent iron (Fe°/ZVI NPs) nanoparticles were synthesized and investigated for the degradation of Paraoxon, a chemical warfare agent and insecticide, in an aqueous solution. The effects of solution pH, initial pollutant concentration, ZVI NPs dosage and contact time on mineralization efficiency were examined. Batch experiments demonstrated that 15 mg L−1 of Paraoxon was mineralized at degradation efficiencies of 75.9%, 63.9% and 48.9% after three-hour treatment with 6.0, 4.0 and 2.0% w/v Fe°, respectively. The calculated kinetic rate constant kobs was 0.4791 h−1, 0.4519 h−1 and 0.4175 h−1 after treating 10, 15 and 20 mg L−1 of Paraoxon solution with 6.0% w/v Fe, respectively. The degradation dynamics were described by the first-order kinetic law as evidenced by rate constants independent of the initial Paraoxon concentration. The degradation efficiency was strongly dependent on pH, increasing with a decrease in pH, with maximum removal at pH 4. p-nitrophenol was detected as a degradation product, suggesting cleavage of the O-P bond and hydrolysis as possible reaction processes. This study showed that Fe° particles have the potential for degrading Paraoxon.

Funder

National Commission of Science, Technology and Innovation, Kenya

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3