Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review

Author:

Burmistrov Igor,Khanna Rita,Gorshkov NikolayORCID,Kiselev NikolayORCID,Artyukhov DenisORCID,Boychenko Elena,Yudin AndreyORCID,Konyukhov Yuri,Kravchenko Maksim,Gorokhovsky Alexander,Kuznetsov Denis

Abstract

Thermo-electrochemical cells (also known as thermocells, TECs) represent a promising technology for harvesting and exploiting low-grade waste heat (<100–150 °C) ubiquitous in the modern environment. Based on temperature-dependent redox reactions and ion diffusion, emerging liquid-state thermocells convert waste heat energy into electrical energy, generating power at low costs, with minimal material consumption and negligible carbon footprint. Recent developments in thermocell performances are reviewed in this article with specific focus on new redox couples, electrolyte optimisation towards enhancing power output and operating temperature regime and the use of carbon and other nanomaterials for producing electrodes with high surface area for increasing current density and device performance. The highest values of output power and cell potentials have been achieved for the redox ferri/ferrocyanide system and Co2+/3+, with great opportunities for further development in both aqueous and non-aqueous solvents. New thermoelectric applications in the field include wearable and portable electronic devices in the health and performance-monitoring sectors; using body heat as a continuous energy source, thermoelectrics are being employed for long-term, continuous powering of these devices. Energy storage in the form of micro supercapacitors and in lithium ion batteries is another emerging application. Current thermocells still face challenges of low power density, conversion efficiency and stability issues. For waste-heat conversion (WHC) to partially replace fossil fuels as an alternative energy source, power generation needs to be commercially viable and cost-effective. Achieving greater power density and operations at higher temperatures will require extensive research and significant developments in the field.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference112 articles.

1. Estimating the global waste heat potential

2. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes

3. Charging-free electrochemical system for harvesting low-grade thermal energy

4. CarbonBrief/Energy https://www.carbonbrief.org/solar-wind-nuclear-amazingly-low-carbon-footprints/#:~:text=Simon%20Evans,-08.12.2017%20%7C%205&text=Building%20solar%2C%20wind%20or%20nuclear,of%20electricity%20out%20to%202050

5. COP26 Outcomes https://ukcop26.org/the-conference/cop26-outcomes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3