A Novel Image-Classification-Based Decoding Strategy for Downlink Sparse Code Multiple Access Systems

Author:

Chen Zikang12ORCID,Ge Wenping12,Chen Juan1,He Jiguang34ORCID,He Hongliang5ORCID

Affiliation:

1. College of Computer Science and Technology, Xinjiang University, Urumqi 830046, China

2. Signal Detection and Processing Key Laboratory, Urumqi 830046, China

3. Technology Innovation Institute, Abu Dhabi P.O. Box 9639, United Arab Emirates

4. Centre for Wireless Communications, University of Oulu, 90014 Oulu, Finland

5. College of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China

Abstract

The introduction of sparse code multiple access (SCMA) is driven by the high expectations for future cellular systems. In traditional SCMA receivers, the message passing algorithm (MPA) is commonly employed for received-signal decoding. However, the high computational complexity of the MPA falls short in meeting the low latency requirements of modern communications. Deep learning (DL) has been proven to be applicable in the field of signal detection with low computational complexity and low bit error rate (BER). To enhance the decoding performance of SCMA systems, we present a novel approach that replaces the complex operation of separating codewords of individual sub-users from overlapping codewords using classifying images and is suitable for efficient handling by lightweight graph neural networks. The eigenvalues of training images contain crucial information, such as the amplitude and phase of received signals, as well as channel characteristics. Simulation results show that our proposed scheme has better BER performance and lower computational complexity than other previous SCMA decoding strategies.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3