The Fate of Bacteriophages in Recirculating Aquaculture Systems (RAS)—Towards Developing Phage Therapy for RAS

Author:

Almeida Gabriel M.F.ORCID,Mäkelä Kati,Laanto ElinaORCID,Pulkkinen Jani,Vielma Jouni,Sundberg Lotta-Riina

Abstract

Aquaculture production has increased tremendously during the last decades, and new techniques have been developed, e.g., recirculating aquaculture systems (RAS). In RAS, the majority of water volume is circulated via mechanical and biological filters and reused in the tanks. However, the prevention and treatment of diseases in these systems are challenging, as the pathogens spread throughout the system, and the addition of chemicals and antibiotics disrupts the microbiome of the biofilters. The increasing antibiotic resistance has made phage therapy a relevant alternative for antibiotics in food production. Indeed, as host-specific and self-replicating agent they might be optimal for targeted pathogen eradication in RAS. We tested the survival and spread of Flavobacterium columnare -infecting phage FCL-2 in recirculating aquaculture fish farm with rainbow trout (Oncorhynchus mykiss) in a fully controlled study. After a single addition, phage persisted in water samples collected from tank, fixed bed, moving bed, and aeration unit up to 14 days, and in the water of rearing tanks, rainbow trout mucus, and bioreactor carrier media from the fixed and moving bed biofilters for 21 days. Furthermore, phage adsorbed preferentially to moving bed carrier media, which contained biofilm attached and from which higher phage numbers were recovered. This study shows phages as a potent strategy for maintaining biosecurity in RAS systems.

Funder

Academy of Finland

European Maritime and Fisheries Fund

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3