Occurrence and Distribution of Antibiotic Resistance Genes in Municipal Wastewater Treatment Plants with D-Type Filters

Author:

Wang Haoze,Li Bing,Zhao Jiaheng,Tian Yongjing,Qiu YongORCID

Abstract

Filters are popularly used in municipal wastewater treatment plants (WWTPs) as the final guards against effluent solids; however, their impacts on antibiotic resistance gene (ARG) removal in the WWTPs are still unclear. In this study, metagenomic analysis was used to find out the distribution characteristics of ARGs in two WWTPs equipped with the same D-Type fiber filters. Samples of influent, activated sludge liquor, secondary clarifier effluent, and D-Type filter effluent were found to host 695, 609, 675, and 643 ARG subtypes, respectively. The detected ARGs mainly included macB (4.1–8.9%), sav1866 (1.7–3.4%), and oleC (1.6–3.8%). Co-occurrence network analysis combined with contribution analysis helped to identify the ARG-related risks in the samples. Microbacterium, Acinetobacter, Gordonia, and Streptomyces significantly correlated with more than ten kinds of ARG subtypes, implying that they are potential hosts for these resistance gene subtypes. The number of ARG subtypes in the D-Type filter was less than those in the secondary clarifier effluent, indicating the potential of D-Type filters to effectively reduce the ARGs released into the environment. However, the abundance of two pathogens, Mycobacterium and PmrA, increased after the treatment by the D-Type filter, which may reveal the adverse effects of intercepting ARGs inside the fibers. The results may help the understanding of the complex role of the D-Type fiber filter on ARG distribution in WWTPs.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3