Automatic Open Water Flood Detection from Sentinel-1 Multi-Temporal Imagery

Author:

Hlaváčová IvanaORCID,Kačmařík MichalORCID,Lazecký MilanORCID,Struhár JurajORCID,Rapant PetrORCID

Abstract

Many technical infrastructure operators manage facilities distributed over large areas. They face the problem of finding out if a flood hit a specific facility located in the open countryside. Physical inspection after every heavy rain is time and personnel consuming, and equipping all facilities with flood detection is expensive. Therefore, methods are being sought to ensure that these facilities are monitored at a minimum cost. One of the possibilities is using remote sensing, especially radar data regularly scanned by satellites. A significant challenge in this area was the launch of Sentinel-1 providing free-of-charge data with adequate spatial resolution and relatively high revisit time. This paper presents a developed automatic processing chain for flood detection in the open landscape from Sentinel-1 data. Flood detection can be started on-demand; however, it mainly focuses on autonomous near real-time monitoring. It is based on a combination of algorithms for multi-temporal change detection and histogram thresholding open-water detection. The solution was validated on five flood events in four European countries by comparing its results with flood delineation derived from reference datasets. Long-term tests were also performed to evaluate the potential for a false positive occurrence. In the statistical classification assessments, the mean value of user accuracy (producer accuracy) for open-water class reached 83% (65%). The developed solution typically provided flooded polygons in the same areas as the reference dataset, but of a smaller size. This fact is mainly attributed to the use of universal sensitivity parameters, independent of the specific location, which ensure almost complete successful suppression of false alarms.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algoritmos de aprendizaje automático para clasificar zonas de inundación a partir de imágenes de radar de apertura sintética;Tecnología y ciencias del agua;2023-07-01

2. Remote Sensing for Flood Mapping and Monitoring;International Handbook of Disaster Research;2023

3. Remote Sensing for Flood Mapping and Monitoring;International Handbook of Disaster Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3