Mechanisms-Based Transitional Viscoplasticity

Author:

Zubelewicz Aleksander

Abstract

When metal is subjected to extreme strain rates, the conversation of energy to plastic power, the subsequent heat production and the growth of damages may lag behind the rate of loading. The imbalance alters deformation pathways and activates micro-dynamic excitations. The excitations immobilize dislocation, are responsible for the stress upturn and magnify plasticity-induced heating. The main conclusion of this study is that dynamic strengthening, plasticity-induced heating, grain size strengthening and the processes of microstructural relaxation are inseparable phenomena. Here, the phenomena are discussed in semi-independent sections, and then, are assembled into a unified constitutive model. The model is first tested under simple loading conditions and, later, is validated in a numerical analysis of the plate impact problem, where a copper flyer strikes a copper target with a velocity of 308 m/s. It should be stated that the simulations are performed with the use of the deformable discrete element method, which is designed for monitoring translations and rotations of deformable particles.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3