Influence of Extrusion Temperature on the Corrosion Behavior in Sodium Chloride Solution of Solid State Recycled Aluminum Alloy 6061 Chips

Author:

Alharthi Nabeel H.,Sherif El-Sayed M.ORCID,Taha Mohamed A.ORCID,Abbas Adel T.ORCID,Abdo Hany S.ORCID,Alharbi Hamad F.ORCID

Abstract

In the present work, aluminum alloy 6061 (AA6061) device chips were subjected to cold compaction monitored by an extrusion procedure at an extrusion ratio of 5:2 and elevated temperatures of 350, 425, and 500 °C, respectively. The influence of changing temperature on the corrosion of the extruded alloys after 1 h and 24 h in 3.5% NaCl solutions was studied. The polarization (cyclic potentiodynamic polarization, CPP) results indicated that the corrosion decreases with the increase of extrusion temperature of AA6061 from 350 to 500 °C. Impedance (electrochemical impedance spectroscopy, EIS) experiments provided a remarkable increase in the corrosion resistance with rising the extrusion temperature. Potentiostatic current-time (PCT) curves indicated that the current initially increased then decreased for all alloys after 1 h measurements. Prolonging the exposure time to 24 h was observed to decrease the rate of corrosion for all AA6061 alloys as proved by CPP and EIS data. This effect was found to increase the pitting corrosion as indicated by the measured PCT curves and by the scanning electron microscopy (SEM) images for the surface of the alloys. The surface layers formed on AA6061 alloys were mostly composed of aluminum oxide as presented by the spectra of the energy dispersive X-ray analyzer (EDX). All results indicated that the increase of the temperature of extrusion increased the corrosion resistance via decreasing the corrosion current and corrosion rate, and that this effect was found remarkably increased when the immersion time increased from 1 to 24 h exposure to the chloride test solution.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3