Abstract
Creep of an alloy based on the intermetallic compound Fe2AlCo was studied by compressive creep tests in the temperature range from 873 to 1073 K. The stress exponent n and the activation energy of creep Q were determined using the multivariable regression of the creep-rate data and their description by means of sinh equation (Garofalo equation). The evaluated stress exponents indicate that the dislocation climb controls creep deformation. The estimated apparent activation energies for creep are higher than the activation enthalpy for the diffusion of Fe in Fe3Al. This can be ascribed to the changes in crystal lattice and changing microstructure of the alloy.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献