Carbothermal Reduction Nitridation of Fly Ash, Diatomite and Raw Illite: Formation of Nitride Powders with Different Morphology and Photoluminescence Properties

Author:

Dou Kuizhou,Jiang Yinshan,Xue Bing,Wei Cundi,Li Fangfei

Abstract

Rare-earth-doped SiAlON and Si3N4 materials from aluminosilicate starting materials have been reported to show superior photoluminescence (PL) properties. Three different starting materials, including pulverized coal furnace fly ash, diatomite and raw illite, were used for synthesis of nitride materials. The phase and morphology evolution of these products were carefully monitored at the low temperature range of 1350 °C to 1450 °C by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR). The PL properties of Eu-doped nitride products were also comparatively characterized. The results show that the type of starting material affects the phase composition and the photoluminescence properties of products. The existence of aluminum and alkali metals could effectively promote nitridation reactions. Aluminum in the starting materials led to the formation of different aluminum-rich nitride phases. Thus, β-SiAlON could be achieved at a much lower temperature (1350 °C) using raw illite or fly ash containing the proper amount of aluminum. Additionally, excess aluminum led to the formation of corundum and 15R-SiAlON. The products from pulverized coal furnace fly ash had more prismatic particles, and the products from diatomite had more fibrous particles. With the progress of the nitridation process, the fibers were increased, becoming longer and straighter, and the prismatic particles were more obvious. The presence of aluminum in the starting materials led to a blue shift in the photoluminescence spectrum.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3