Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications

Author:

Krasilin Andrei A.ORCID,Khrapova Ekaterina K.,Maslennikova Tatiana P.ORCID

Abstract

The past two decades have been marked by an increased interest in the synthesis and the properties of geoinspired hydrosilicate nanoscrolls and nanotubes. The present review considers three main representatives of this group: halloysite, imogolite and chrysotile. These hydrosilicates have the ability of spontaneous curling (scrolling) due to a number of crystal structure features, including the size and chemical composition differences between the sheets, (or the void in the gibbsite sheet and SiO2 tetrahedron, in the case of imogolite). Mineral nanoscrolls and nanotubes consist of the most abundant elements, like magnesium, aluminium and silicon, accompanied by uncontrollable amounts of impurities (other elements and phases), which hinder their high technology applications. The development of a synthetic approach makes it possible to not only to overcome the purity issues, but also to enhance the chemical composition of the nanotubular particles by controllable cation doping. The first part of the review covers some principles of the cation doping approach and proposes joint criteria for the semiquantitative prediction of morphological changes that occur. The second part focuses on some doping-related properties and applications, such as morphological control, uptake and release, magnetic and mechanical properties, and catalysis.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference203 articles.

1. THE STRUCTURE OF THE CHLORITES

2. THE SYSTEM MgO—SiO2—H2O

3. Morphology and structure of endellite and halloysite;Bates;Am. Mineral.,1950

4. Tubular Crystals of Chrysotile Asbestos

5. An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals;Roy;Am. Mineral.,1954

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3