Mechanisms of Grain Structure Evolution in a Quenched Medium Carbon Steel during Warm Deformation

Author:

Panov DmitriyORCID,Dedyulina Olga,Shaysultanov Dmitriy,Stepanov NikitaORCID,Zherebtsov SergeyORCID,Salishchev GennadyORCID

Abstract

The as-quenched medium-carbon low-alloy Fe-0.36wt.%C-1wt.%Cr steel was subjected to warm deformation via uniaxial compression at temperatures of 400–700 °C and strain rates of 10−4–10−2 s−1. At low temperatures (400–550 °C), the microstructure evolution was mainly associated with dynamic recovery with the value of activation energy of 140 ± 35 kJ/mol. At higher temperatures (600–700 °C), dynamic recrystallization was developed, and activation energy in this case was 243 ± 15 kJ/mol. The presence of nanoscale carbide particles in the structure at temperatures of 400–600 °C resulted in the appearance of threshold stresses. A two-component <001>//compression direction (CD) and <111>//CD deformation texture was formed during deformation. Deformation at the low temperatures resulted in the formation of elongated ferritic grains separated mainly by high-angle boundaries (HAB) with a strong <001>//CD texture. The grains with the <111>//CD orientation were wider in comparison with those with the <001>//CD orientation. The development of substructure in the form of low-angle boundaries (LAB) networks was also observed in the <111>//CD grains. The development of dynamic recrystallization restricted the texture formation. The processing map for warm deformation of the 0.36C-1Cr steel was constructed.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3