Engineered Layer-Stacked Interfaces Inside Aurivillius-Type Layered Oxides Enables Superior Ferroelectric Property

Author:

Sun Shujie,Yin Xiaofeng

Abstract

Layer engineering with different layer numbers inside Aurivillius-type layered structure, similar to interface engineering in heterojunctions or superlattices, can give rise to excellent physical properties due to the correlated layer-stacked interfaces of two different layer phases with different strain states. In this work, using the solid-state reactions from Aurivillius-type Bi3TiNbO9 (2-layer) and Bi4Ti3O12 (3-layer) ferroelectric powder mixtures, single-phase compound of Bi7Ti4NbO21 with an intergrowth structure of 2-layer and 3-layer perovskite slabs sandwiched between the Bi-O layers was synthesized and the effects of this layer-engineered strategy on the structure, Raman-vibration and ferroelectric properties were systematically investigated. The mostly-ordered intergrowth phase was observed clearly by utilizing X-ray diffraction and advanced electron micro-techniques. Uniformly dispersions and collaborative vibrations of Ti and Nb ions in the layer-engineered Bi7Ti4NbO21 were demonstrated. Remarkably, dielectric and ferroelectric properties were also recorded and an enhanced ferroelectric response was found in the layer-engineered mixed-layer sample with high ferroelectric Curie temperature, compared with the homogeneous 2-layer and 3-layer samples. Analyses of the Raman spectra and atomic structures confirmed that the performance improvement of the layer-engineered sample is intrinsic to the correlated layer-stacked interfaces inside the Aurivillius-type layered oxides, arising from strain-induced lattice distortions at the interfaces.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3