Abstract
Azilsartan is a novel angiotension II receptor blocker primarily used to treat high blood pressure. This is not a formulation-friendly molecule largely due to the inherent water-solubility pitfalls. In this paper, two novel cocrystals of azilsartan (AZ) were studied (AZ-BIP, AZ-BPE; BIP = 4,4′-bipyridine, BPE = trans-1,2-bis (4-pyridyl) ethylene) by solution crystallization. The structures of these two cocrystals were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), including the single-crystal structure determination of AZ-BIP and AZ-BPE. In the cocrystals AZ-BIP (2:1) and AZ-BPE (2:1), two AZ molecules and one coformer formed a sandwich structure through N-H…N interactions. These sandwich structures were extended into a one-dimensional structure through O-H…N hydrogen bonds. The equilibrium solubility study demonstrated that the AZ-BIP and AZ-BPE cocrystals both showed higher solubility than azilsartan in water.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献