The Sensitivity of the Pair-Angle Distribution Function to Protein Structure

Author:

Adams PatrickORCID,Binns JackORCID,Greaves Tamar L.ORCID,Martin Andrew V.ORCID

Abstract

The continued development of X-ray free-electron lasers and serial crystallography techniques has opened up new experimental frontiers. Nanoscale dynamical processes such as crystal growth can now be probed at unprecedented time and spatial resolutions. Pair-angle distribution function (PADF) analysis is a correlation-based technique that has the potential to extend the limits of current serial crystallography experiments, by relaxing the requirements for crystal order, size and number density per exposure. However, unlike traditional crystallographic methods, the PADF technique does not recover the electron density directly. Instead it encodes substantial information about local three-dimensional structure in the form of three- and four-body correlations. It is not yet known how protein structure maps into the many-body PADF correlations. In this paper, we explore the relationship between the PADF and protein conformation. We calculate correlations in reciprocal and real space for model systems exhibiting increasing degrees of order and secondary structural complexity, from disordered polypeptides, single alpha helices, helix bundles and finally a folded 100 kilodalton protein. These models systems inform us about the distinctive angular correlations generated by bonding, polypeptide chains, secondary structure and tertiary structure. They further indicate the potential to use angular correlations as a sensitive measure of conformation change that is complementary to existing structural analysis techniques.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3