Exploring the Chelating Potential of an Easily Synthesized Schiff Base for Copper Sensing

Author:

Sanmartín-Matalobos JesúsORCID,García-Deibe AnaORCID,Zarepour-Jevinani Morteza,Aboal-Somoza Manuel,Bermejo-Barrera Pilar,Fondo MatildeORCID

Abstract

The present study deals with the investigation of Cu2+, Ni2+ and Pd2+ chelating potential of the Schiff base, (E)-N-(2-((2-hydroxybenzylidene)amino)benzyl)-4-methylbenzenesulfonamide (H2SB). Crystal structures of Ni(HSB)2, Pd(HSB)2 and Cu(HSB)2 have been elucidated from single crystal X-ray diffraction data. NMR spectroscopy showed the presence of two conformers of Pd(HSB)2 in solution, both with an E configuration of the ligand. The determination of binding constants by fluorescence quenching showed that affinity of H2SB to Cu2+ in solution is higher than for Ni2+ and Pd2+. Since there is a high demand for selective, sensitive, rapid and simple methods to detect copper in aqueous samples (both as Cu2+ ions and as CuO NPs), we have explored H2SB as an optical chemosensor. H2SB interacts with increasing concentrations of Cu2+ ions, giving rise to a linear increase in the absorbance of a band centered at about 392 nm. H2SB displays a high selectivity toward Cu2+, even in the presence of the most common metal ions in water (Ca2+, Mg2+, Na+, K+, Al3+ and Fe3+), and some heavy transition metal ions such as the soft acids Pd2+ and Cd2+. H2SB also interacts with increasing concentrations of CuO NPs, which gives rise to a linear decrease in its fluorescence intensity (λem = 500 nm, λex = 390 nm). Quenching has occurred as a result of the formation of a non-fluorescent ground-state surface complex H2SB–CuO NPs. The limits of detection and quantification of CuO NPs were 9.8 mg/L and 32.6 mg/L, respectively. The presence of TiO2, Ag and Au NPs does not interfere with the determination of CuO NPs.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3