Author:
Yeh Chun-Liang,Chen Yin-Chien
Abstract
The formation of NbB2–MgAl2O4 composites from the MgO-added thermite-based reaction systems was investigated by self-propagating high-temperature synthesis (SHS). Two thermite mixtures, Nb2O5/B2O3/Al and Nb2O5/Al, were, respectively, adopted in Reactions (1) and (2). The XRD analysis confirmed the combination of Al2O3 with MgO to form MgAl2O4 during the SHS process and that excess boron of 30 atom.% was required to yield NbB2–MgAl2O4 composites with negligible NbB and Nb3B4. The microstructure of the composite reveals that rod-shaped MgAl2O4 crystals are closely interlocked and granular NbB2 are embedded in or scattered over MgAl2O4. With the addition of MgAl2O4, the fracture toughness (KIC) of 4.37–4.82 MPa m1/2 was obtained for the composites. The activation energies Ea = 219.5 ± 16 and 167.9 ± 13 kJ/mol for Reactions (1) and (2) were determined from combustion wave kinetics.
Funder
Ministry of Science and Technology, Taiwan
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献