Abstract
Doped SrTiO3 becomes a metal at extremely low doping concentrations n and is even superconducting at n < 1020 cm−3, with the superconducting transition temperature adopting a dome-like shape with increasing carrier concentration. In this paper it is shown within the polarizability model and from first principles calculations that up to a well-defined carrier concentration nc transverse optic mode softening takes place together with polar nano-domain formation, which provides evidence of inhomogeneity and a two-component type behavior with metallicity coexisting with polarity. Beyond this region, a conventional metal is formed where superconductivity as well as mode softening is absent. For n ≤ nc the effective electron-phonon coupling follows the superconducting transition temperature. Effusion measurements, as well as macroscopic and nanoscopic conductivity measurements, indicate that the distribution of oxygen vacancies is local and inhomogeneous, from which it is concluded that metallicity stems from filaments which are embedded in a polar matrix as long as n ≤ nc.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献