Broadband Plasmonic Nanopolarizer Based on Different Surface Plasmon Resonance Modes in a Silver Nanorod

Author:

Zhang JunxiORCID,Hu Lei,Hu Zhijia,Wei Yongqing,Zhang Wei,Zhang Lide

Abstract

Conventional polarizers including sheet, wire-grid, prism, and Brewster-angle type polarizers are not easily integrated with photonic circuits. Polarizing elements on the nanoscale are indispensable for integrated all-optical nanophotonic devices. Here, we propose a plasmonic nanopolarizer based on a silver nanorod. The polarization characteristics result from the excitation of different resonance modes of localized surface plasmons (LSPs) at different wavelengths. Furthermore, the polarization characteristics in near field regions have been demonstrated by the electric field distribution of the nanorod based on finite-difference time-domain (FDTD) simulation, indicating a strong local resonant cavity with a standing wave mode for transverse electric (TE) polarization and weak electric fields distributed for transverse magnetic (TM) polarization. The nanopolarizer can efficiently work in the near field region, exhibiting a nanopolarization effect. In addition, very high extinction ratios and extremely low insertion losses can be achieved. Particularly, the nanopolarizer can work in a broadband from visible to near-infrared wavelengths, which can be tuned by changing the aspect ratio of the nanorod. The plasmonic nanopolarizer is a promising candidate for potential applications in the integration of nanophotonic devices and circuits.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3