Extended π-Systems in Diimine Ligands in [Cu(P^P)(N^N)][PF6] Complexes: From 2,2′-Bipyridine to 2-(Pyridin-2-yl)Quinoline

Author:

Keller SarahORCID,Alkan-Zambada Murat,Prescimone AlessandroORCID,Constable Edwin C.ORCID,Housecroft Catherine E.ORCID

Abstract

We describe the synthesis and characterization of [Cu(POP)(1)][PF6], [Cu(POP)(2)][PF6], [Cu(xantphos)(1)][PF6], and [Cu(xantphos)(2)][PF6] in which ligands 1 and 2 are 2-(pyridin-2-yl)quinoline and 2-(6-methylpyridin-2-yl)quinoline, respectively. With 2,2'-bipyridine (bpy) as a benchmark, we assess the impact of the extended π-system on structural and solid-state photophysical properties. The single crystal structures of [Cu(POP)(2)][PF6], [Cu(xantphos)(1)][PF6], and [Cu(xantphos)(2)][PF6] were determined and confirmed a distorted tetrahedral copper(I) coordination environment in each [Cu(P^P)(N^N)]+ cation. The xanthene unit in [Cu(xantphos)(1)][PF6] and [Cu(xantphos)(2)][PF6] hosts the quinoline unit of 1, and the 6-methylpyridine group of 2. 1H NMR spectroscopic data indicate that these different ligand orientations are also observed in acetone solution. In their crystal structures, the [Cu(POP)(2)]+, [Cu(xantphos)(1)]+, and [Cu(xantphos)(2)]+ cations exhibit different edge-to-face and face-to-face π-interactions, but in all cases, the copper(I) centre is effectively protected by a ligand sheath. In [Cu(POP)(2)][PF6], pairs of cations engage in an efficient face-to-face π-stacking embrace, and we suggest that this may contribute to this compound having the highest photoluminescence quantum yield (PLQY = 21%) of the series. With reference to data from the Cambridge Structural Database, we compare packing effects and PLQY data for the complexes incorporating 2-(pyridin-2-yl)quinoline and 2-(6-methylpyridin-2-yl)quinoline, with those of the benchmark bpy-containing compounds. We also assess the effect that Cu⋯O distances in the {Cu(POP)} and {Cu(xantphos)} domains of [Cu(P^P)(N^N)][X] compounds have on solid-state PLQY values.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3