Mixed Oscillation Flow of Binary Fluid with Minus One Capillary Ratio in the Czochralski Crystal Growth Model

Author:

Wu Chunmei,Chen Jinhui,Li Yourong

Abstract

This work presented a series of three-dimensional unsteady numerical simulations on the characteristics of the mixed oscillation flows of binary mixture in a Czochralski crystal growth model. The silicon-germanium melt is investigated and the capillary ratio is minus one. The simulation results showed that, for the special capillary ratio, the thermal and solutocapillary forces are imposed in opposite directions and counteract each other. With the effect of buoyancy, the balance between the capillary forces is disturbed. Mixed with the forced convection driven by rotation, the capillary-buoyancy convection is complex. The basic mixed flow streamlines are presented as various rolling cells. The directions of the rolls are dependent on the combinations of surface and body forces. With the increase of temperature gradient, the basic flow stability is broken, and the oscillations occur. The crucible rotation has an effective influence on the stability enhancement. However, affected by the crystal rotation, the critical condition experiences an increase to a turning point, and then undergoes a sharp reduction to zero. Once the instability is incubated, the surface oscillations are analyzed. For the three-dimensional steady flow, only spatial oscillations are observed circumferentially, and the surface patterns of spokes, rosebud, and pulsating ring are obtained. For the unsteady oscillation flow, the spiral hydrosoultal waves, rotating waves, and superimposition of spirals and spokes are observed, and the oscillation behaviors are also discussed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3