Insight into Positional Isomerism of N-(Benzo[d]thiazol-2-yl)-o/m/p-Nitrobenzamide: Crystal Structure, Hirshfeld Surface Analysis and Interaction Energy

Author:

Binti Abdul Latiff Aqilah,Chong Yan YiORCID,Mark-Lee Wun FuiORCID,Kassim Mohammad B.ORCID

Abstract

The functionalization of N-(benzo[d]thiazol-2-yl)benzamide with a nitro (NO2) substituent influences the solid-state arrangement, absorption and fluorescence properties of these compounds. Each of these compounds crystallised in a different crystal system or space group, namely a monoclinic crystal system with P21/n and C2/c space groups for o-NO2 and m-NO2 derivatives, respectively, and an orthorhombic crystal system (Pbcn space group) for p-NO2 derivative. The o-NO2 substituent with intrinsic steric hindrance engendered a distorted geometry. Conversely, the m-NO2 derivate displayed the most planar geometry among the analogues. The solid-state architectures of these compounds were dominated by the N−H···N and C−H···O intermolecular hydrogen bonds and were further stabilised by other weak interactions. The dimer synthons of the compounds were established via a pair of N−H···N hydrogen bonds. These findings were corroborated by a Hirshfeld surface analysis and two-dimensional (2D) fingerprint plot. The interaction energies within the crystal packing were calculated (CE-B3LYP/6-31G(d,p)) and the energy frameworks were modelled by CrystalExplorer17.5. The highly distorted o-NO2 congener synthon relied mainly on the dispersion forces, which included π–π interactions compared to the electrostatic attractions found in m-NO2. Besides, the latter possesses an elevated asphericity character, portraying a marked directionality in the crystal array. The electrostatic and dispersion forces were regarded as the dominant factors in stabilising the crystal packing.

Funder

Ministry of Higher Education, Malaysia

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3