Abstract
Luminescence properties of europium-doped Ca10-xEux(PO4)6(OH)2 (xEu = 0, 0.01, 0.02, 0.10 and 0.20) and gadolinium-doped hydroxyapatite Ca9.80Gd0.20(PO4)6(OH)2 (HA), synthesized via solid-state reaction at T = 1300 °C, were investigated using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR), and luminescence spectroscopy. Crystal structure characterization (from unit cell parameters determination to refined atomic positions) was achieved in the P63/m space group. FTIR analyses show only slight band shifts of (PO4) modes as a function of the rare earth concentration. Structural refinement, achieved via the Rietveld method, and luminescence spectroscopy highlighted the presence of dopant at the Ca2 site. Strong luminescence was observed for all Eu- and Gd-doped samples. Our multi-methodological study confirms that rare-earth (RE)-doped synthetic hydroxyapatites are promising materials for bio-imaging applications.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献