Abstract
A second-generation Ni-based superalloy has been directionally solidified by using a Bridgman method, and the key processing steps have been investigated with a focus on their effects on microstructure evolution and mechanical properties. The as-grown microstructure is of a typical dendrite structure with microscopic elemental segregation during solidification. Based on the microstructural evidence and the measured phase transformation temperatures, a step-wise solution treatment procedure is designed to effectively eliminate the compositional and microstructural inhomogeneities. Consequently, the homogenized microstructure consisting of γ/γ′ phases (size of γ′ cube is ~400 nm) have been successfully produced after a two-step (solid solution and aging) treatment. The mechanical properties of the resulting alloys with desirable microstructures at room and elevated temperatures are measured by tensile tests. The strength of the alloy is comparable to commercial monocrystalline superalloys, such as DD6 and CMSX-4. The fracture modes of the alloy at various temperatures have also been studied and the corresponding deformation mechanisms are discussed.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献