Abstract
We investigated the elastic properties of the HfV2O7 high-temperature phase, exhibiting negative thermal expansion, in a synergetic strategy of first-principle calculations and nanoindentation experiments performed on sputtered films. Self-consistent results were obtained for the measured elastic modulus (73 ± 14 GPa) and dispersion-corrected density functional theory calculations. The elastic properties of HfV2O7 are affected by long-range dispersion interaction, which may be induced by severe modification in the second-nearest neighbor O-O bond distance as obtained upon compression. HfV2O7 is composed of HfO6, VO4, and V2O7 building blocks, whereby the latter is characterized by an increasing V-O(-V) bond length upon compression.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献