Design, Synthesis, and Evaluation of X-ray Crystal Structure, Biological Activities, DFT Calculations, and Molecular Docking of Phenyl Imidazolidin-2-One Derivatives

Author:

Deng XileORCID,Jin Can,Xie Yong,Gao Junbo,Zhou Xiaomao

Abstract

Eight phenyl imidazolinone derivatives were synthesized from N2-(2,4-dimethylphenyl)-N1-methyformamidine (DPMF) via scaffold-hopping method using the ring-closure approach. The prepared compounds were verified using 1H and 13C NMR and HRMS spectroscopies. The structure of compound 3c was confirmed by single-crystal X-ray diffraction analysis. The mean plane of the phenyl and imidazolinone moieties was almost coplanar with an angle of 8.85(4)°. In the crystal, molecules were interlinked with intermolecular hydrogen bonds (N–H···O and C–H···O), generating a network structure. Additionally, compound 3f displayed the highest insecticidal activity (86.7%) against Plutella xylostella at 600 mg/L, which was significantly higher than the insecticidal activity (23.0%) of DPMF. Also, compound 3d displayed good fungicidal activities against Phytophthora capsici, Phytophthora sojae, and Phytophthora infestans. Density functional theory (DFT) calculations were performed to explain the insecticidal and fungicidal activities of phenyl imidazolidin-2-one derivatives, especially potent compounds 3f and 3d. Moreover, the binding modes of compounds 3a–h and DPMF against octopamine receptor of Plutella xylostella were studied by homology modeling and molecular docking. Therefore, a preliminary structure–activity relationship (SAR) was derived and discussed. These results encourage the exploration of novel insecticides and fungicides based on DPMF.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3