Relation between Fish Habitat and the Periodicity of Incremental Lines in the Fossil Otoliths

Author:

Mishima Hiroyuki,Kondo Yasuo,Ohe Fumio,Miake Yasuo,Hayakawa Tohru

Abstract

There are few research reports on the relationship between fish habitats and the periodicity of the fishes’ incremental lines of otolith fossils. The present study examines this relationship through histological and analytical studies on otolith fossils from Nobori Formation, Pliocene, Japan. The specimens were observed and analyzed using light microscopy, polarizing microscopy, Miniscopy, Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) analysis, electron probe X-ray microanalyzer (EPMA), Raman spectroscopy, and XRD. The otolith crystals were aragonite according to XRD and Raman analysis. The incremental lines contained C, O, and Ca, with Si as a trace element. In the layer between the incremental lines, Si was not detected. The circadian incremental lines were unclear and irregularly observed in both Lobianchia gemellarii and Diaphus gigas. Their behavioral pattern included a diurnal vertical movement. By comparison, for Cetonurus noboriensis, Ventrifossa sp., Sebastes scythropus, and Congriscus megastomus, the circadian incremental lines were evident. The habitat of the fishes that live exclusively on the continental slope is kept constant, and the circadian incremental lines are formed regularly. However, for fishes that spend the day in the deep sea and ascend to the shallow sea at night, the ecosystem, such as seawater temperature and pressure, fluctuates, and the circadian incremental lines become unclear and irregular. The period of the circadian incremental lines of otolith may vary due to differences in the ecosystems.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference30 articles.

1. Biominerals and Fossils through Time;Cuif,2011

2. Biomineralization Cell Biology and Mineral Deposition;Simkiss,1989

3. The zebrafish as a genetic model to study otolith formation;Söllner,2004

4. Molecular cloning and expression of an otolith matrix protein cDNA from the rainbow trout, Oncorhynchus mykiss

5. Fish otolith contains a unique structural protein, otolin-1

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3