Role of Potassium Substitution in the Magnetic Properties and Magnetocaloric Effect in La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20)

Author:

Razaq Dhawud Sabilur,Kurniawan BudhyORCID,Munazat Dicky Rezky,Watanabe Kazumitsu,Tanaka Hidekazu

Abstract

The magnetic and magnetocaloric effects of potassium-substituted La0.8−xKxBa0.05Sr0.15MnO3 (0 ≤ x ≤ 0.20) manganite were explored. The samples in polycrystalline form were synthesized by the sol–gel method, with a final sintering temperature of 1100 °C. Powder X-ray diffraction (XRD) patterns refined by Rietveld refinement show that all samples crystallized in rhombohedral structure with R-3c space group. The unit cell volume of the samples decreases with increasing potassium concentration. In addition, small changes in average bond length and bond angle are also observed in the samples. Scanning electron microscope (SEM) images reveal that the largest average grain size was observed for x = 0.10. Field-cooled (FC) magnetization measurements show that the Curie temperature ( T C ) of the samples increases from 320 K for x = 0 to 360 K for x = 0.2. The largest magnetocaloric (MCE) effect, which is represented by maximum magnetic entropy change (− Δ S M , M A X ), reaches its greatest value for the x = 0.10 sample. The monotonous increase in T C suggests that TC is mainly governed by the ferromagnetic coupling between Mn ions induced by the changes on average bond length and bond angle. The obtained − Δ S M , M A X value suggests that MCE property is more sensitive to Zener theory of double exchange, which is strongly related to the Mn3+/Mn4+ ratio of the samples.

Funder

Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3