Abstract
Cobalt alloys are widely used in biomedicine, implantology, and dentistry due to their high corrosion resistance and good mechanical properties. The high carbon improves the wear properties, but causes fragility and dangerous cracking of elements during use. The aim of the present work was to analyze and compare the structure and wear resistance of Co-based alloy samples with low carbon content, produced by Selective Laser Sintering (SLS) and Powder Injection Molding (PIM). Structure characterization, mainly with the use of transmission electron microscopy, was applied to investigate the differences in tribological properties. The better resistance to abrasive wear for SLS was explained by the presence of a hard, intermetallic phase, present as precipitates limited in size and evenly distributed in the cobalt matrix. The second factor was the structure of the cobalt matrix, with dominant content of the hexagonal phase. By combining the characteristic features of the matrix and the reinforcing phase, the analyzed material gains an additional advantage, namely a higher resistance to abrasive wear.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献