Effect of Equal Channel Angular Pressing on Microstructure and Mechanical Properties of a Cu-Mg Alloy

Author:

Ma Muzhi,Zhang Xi,Li Zhou,Xiao Zhu,Jiang Hongyun,Xia Ziqi,Huang Hanyan

Abstract

A Cu-0.43Mg (wt.%) alloy was processed by equal channel angular pressing (ECAP) up to eight passes via a processing route (Bc). The hardness distribution on the longitudinal and transverse sections was collected and the microstructure in the central and bottom regions on the longitudinal section was examined. The result showed that the hardness was improved significantly at the initial stage of the ECAP process, and the lower hardness region appeared at the area nearby the bottom surface. With the number of ECAP passes, the hardness gently increased and finally became saturated. The inhomogeneity of the hardness distribution along the normal direction gradually weakened and finally disappeared. The shear microstructure in the central region was different from that in the bottom region after one ECAP pass, and they became similar to each other after two ECAP passes, except the rotation angle of the elongated grains. With the further increasing ECAP passes, there was no obvious microstructure difference between the central and bottom regions. The inhomogeneities of the hardness and the microstructure along the normal direction in the alloy after one ECAP passes should be attributed to the non-zero outer arc of curvature of the ECAP die and the friction between the bottom surface of the billets and the ECAP die walls. The yield strength of the alloy increased from 124 MPa before the ECAP process to 555 MPa after eight ECAP passes. The improvement of yield strengths of the ECAPed Cu-Mg alloy should be mainly attributed to the dislocation strengthening and the grain boundary strengthening.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3