Unseeded Crystal Growth of (100)-Oriented Grain-Boundary-Free Si Thin-Film by a Single Scan of the CW-Laser Lateral Crystallization of a-Si on Insulator

Author:

Sasaki Nobuo,Arif MuhammadORCID,Uraoka Yukiharu,Gotoh Jun,Sugimoto Shigeto

Abstract

Laser crystallization of a-Si film on insulating substrate is a promising technology to fabricate three-dimensional integrations (3D ICs), flat panel displays (FPDs), or flexible electronics, because the crystallization can be performed on room temperature substrate to avoid damage to the underlying devices or supporting plane. Orientation-controlled grain-boundary-free films are required to improve the uniformity in electrical characteristics of field-effect-transistors (FETs)fabricated in those films. This paper describes the recently found simple method to obtain {100}-oriented grain-boundary-free Si thin-films stably, by using a single scan of continuous-wave (CW)-laser lateral crystallization of a-Si with a highly top-flat line beam with 532 nm wavelength at room temperature in air. It was difficult to control crystal orientations in the grain-boundary-free film crystallized by the artificial modulation of solid-liquid interface, and any other trial to obtain preferential surface orientation with multiple irradiations resulted in grain boundaries. The self-organized growth of the {100}-oriented grain-boundary-free films were realized by satisfying the following conditions: (1) highly uniform top-flat line beam, (2) SiO2 cap, (3) low laser power density in the vicinity of the lateral growth threshold, and (4) single scan crystallization. Higher scan velocity makes the process window wide for the {100}-oriented grain-boundary-free film. This crystallization is very simple, because it is performed by a single unseeded scan with a line beam at room temperature substrate in air.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3