Investigation of Structure, Optical, and Electrical Properties of CuS Thin Films by CBD Technique

Author:

Mohammed Khozik Ahmed,Ahmed Sabah M.ORCID,Mohammed Raghad Y.ORCID

Abstract

Copper Sulfide (CuS) thin films were deposited onto a glass substrate using the Chemical Bath Deposition (CBD) technique. The chemical bath Precursors were made up of CuSO4, SC(NH2)2, and C4H6O6. Different parameters have been considered to specify the optimum conditions for fabricating CuS thin films, such as solution temperature, deposition time, pH level, and different precursor concentrations. It has been found that the optimum deposition time is 20 min at temperature 80 °C and pH = 11. The optimum precursor concentrations were 0.15 M, 0.2 M, and 0.1 M of CuSO4, SC(NH2)2, and C4H6O6, respectively. The structural properties of the thin film were studied using X-ray diffraction (XRD), and a single peak was observed for the thin film made at optimum conditions, while all other cases were amorphous. It is obvious from the optical characterization that the transmission spectra show a red-shift for the cases of increasing deposition time, bath temperature, C4H6O6 concentration, and pH. For the case of increasing CuSO4, blue shifts in the transmission spectra were observed. The energy band gap, resistivity, and activation energy of CuS thin films under optimum conditions are 2.35 eV, 0.7 Ω·cm, and 0.0152 eV, respectively.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference42 articles.

1. Bismuth doped ZnSe films fabricated on silicon substrates by pulsed laser deposition

2. Characterization of electrodeposited Copper Sulphide thin fil;Thanikaikarasan;New Mater. Electrochem. Syst.,2009

3. Evaporated Copper Sulphide Layers for All-Vacuum Evaporated CuxS/CdS Solar Cell;Aperathitis,1990

4. Analysis of Chemically deposited Copper Sulfide thin film;Chisomam;Chmeistry Mater. Res.,2014

5. Copper Sulfides obtained by Spray Pyrolysis-Possible absorbers in solid state solar cell;Luminita;Thin Solid Film.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3