The Effect of Printing Parameters on Electrical Conductivity and Mechanical Properties of PLA and ABS Based Carbon Composites in Additive Manufacturing of Upper Limb Prosthetics

Author:

Pentek Attila,Nyitrai Miklos,Schiffer AdamORCID,Abraham Hajnalka,Bene Matyas,Molnar Emese,Told Roland,Maroti PeterORCID

Abstract

Additive manufacturing technologies are dynamically developing, strongly affecting almost all fields of industry and medicine. The appearance of electrically conductive polymers has had a great impact on the prototyping process of different electrical components in the case of upper limb prosthetic development. The widely used FFF 3D printing technology mainly uses PLA (polylactic acid) and ABS (acrylonitrile butadiene styrene) based composites, and despite their presence in the field, a detailed, critical characterization and comparison of them has not been performed yet. Our aim was to characterize two PLA and ABS based carbon composites in terms of electrical and mechanical behavior, and extend the observations with a structural and signal transfer analysis. The measurements were carried out by changing the different printing parameters, including layer resolution, printing orientation and infill density. To determine the mechanical properties, static and dynamic tests were conducted. The electrical characterization was done by measuring the resistance and signal transfer characteristics. Scanning electron microscopy was used for the structural analysis. The results proved that the printing parameters had a significant effect on the mechanical and electrical characteristics of both materials. As a major novelty, it was concluded that the ABS carbon composite has more favorable behavior in the case of additive manufacturing of electrical components of upper limb prosthetics, and they can be used as moving, rotating parts as well.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3