In-Situ Annealing and Hydrogen Irradiation of Defect-Enhanced Germanium Quantum Dot Light Sources on Silicon

Author:

Spindlberger LukasORCID,Aberl Johannes,Polimeni Antonio,Schuster Jeffrey,Hörschläger Julian,Truglas TiaORCID,Groiss HeikoORCID,Schäffler Friedrich,Fromherz ThomasORCID,Brehm MoritzORCID

Abstract

While light-emitting nanostructures composed of group-IV materials fulfil the mandatory compatibility with CMOS-fabrication methods, factors such as the structural stability of the nanostructures upon thermal annealing, and the ensuing photoluminescence (PL) emission properties, are of key relevance. In addition, the possibility of improving the PL efficiency by suitable post-growth treatments, such as hydrogen irradiation, is important too. We address these issues for self-assembled Ge quantum dots (QDs) that are co-implanted with Ge ions during their epitaxial growth. The presence of defects introduced by the impinging Ge ions results in pronounced PL-emission at telecom wavelengths up to room temperature (RT) and above. This approach allows us to overcome the severe limitations of light generation in the indirect-band-gap group-IV materials. By performing in-situ annealing, we demonstrate a high PL-stability of the defect-enhanced QD (DEQD) system against thermal treatment up to 600 °C for at least 2 h, even though the Ge QDs are structurally affected by Si/Ge intermixing via bulk diffusion. The latter, in turn, allows for emission tuning of the DEQDs over the entire telecom wavelength range from 1.3 µm to 1.55 µm. Two quenching mechanisms for light-emission are discussed; first, luminescence quenching at high PL recording temperatures, associated with the thermal escape of holes to the surrounding wetting layer; and second, annealing-induced PL-quenching at annealing temperatures >650 °C, which is associated with a migration of the defect complex out of the QD. We show that low-energy ex-situ proton irradiation into the Si matrix further improves the light emission properties of the DEQDs, whereas proton irradiation-related optically active G-centers do not affect the room temperature luminescence properties of DEQDs.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3