Optical Characterization of GaN-Based Vertical Blue Light-Emitting Diodes on P-Type Silicon Substrate

Author:

Lei Yu,Wan Hui,Tang Bin,Lan Shuyu,Miao Jiahao,Wan Zehong,Liu Yingce,Zhou ShengjunORCID

Abstract

Fabricating GaN-based light-emitting diodes (LEDs) on a silicon (Si) substrate, which is compatible with the widely employed complementary metal–oxide–semiconductor (CMOS) circuits, is extremely important for next-generation high-performance electroluminescence devices. We conducted a systematic investigation of the optical properties of vertical LEDs, to reveal the impacts of the manufacturing process on their optical characteristics. Here, we fabricated and characterized high-efficiency GaN-based LEDs with integrated surface textures including micro-scale periodic hemispherical dimples and nano-scale random hexagonal pyramids on a 4 inch p-type Si substrate. The highly reflective Ag/TiW metallization scheme was performed to decrease downward-absorbing light. We demonstrated the influence of transferring LED epilayers from a sapphire substrate onto the Si substrate on the emission characteristics of the vertical LEDs. The removal of the sapphire substrate reduced the adverse impacts of the quantum-confined Stark effect (QCSE). The influence of integrated surface textures on the light extraction efficiency (LEE) of the vertical LEDs was studied. With the injection current of 350 mA, vertical LEDs with integrated surface textures demonstrated an excellent light output power of 468.9 mW with an emission peak wavelength of 456 nm. This work contributes to the integration of GaN-based vertical LEDs into Si-based integrated circuits.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3