Active Support System for the Correction of a 4m SiC Primary Mirror Based on the Bending Mode

Author:

Yu Zhiyuan12,Wu Xiaoxia1,Wang Fuguo1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Active optics is a key technology in ground-based large-aperture telescopes. The active correction of the surface shape of the primary mirror is used to reduce the surface shape error and improve the imaging quality. At present, the structure of the active optics support system is not standardized. Therefore, to ensure the imaging quality of a telescope using a 4m SiC (silicon carbide) primary mirror, this article designed an active support system for the primary mirror and comprehensively evaluated the performance of the system. The system used pneumatic actuators to correct the surface shape of the primary mirror and a six-hardpoint positioning mechanism to correct the pose of the primary mirror. A method for compensating for the force on the hardpoints that causes protrusions and dents on the primary mirror surface was proposed, which effectively improved the accuracy of the primary mirror surface. The bending-mode method was used to determine the correction force. To achieve better results in the surface shape correction based on the bending mode, the relationship between the order of the bending modes used in the correction and the correction effect was studied, enabling the system to achieve a higher surface shape accuracy with a smaller correction force. Finally, the performance of the system was evaluated under various conditions, such as under gravity, thermal load, and wind load. The results indicated that the system had good correction effects on the deformation of the primary mirror under various operating conditions and could meet the requirements of optical design for surface accuracy. In conclusion, this study not only verified the application of active optics technology based on the bending mode in large-aperture SiC mirrors, but also improved on the relevant theoretical research on active optics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3