Electric Load Forecasting Based on Deep Ensemble Learning

Author:

Wang Aoqiang12,Yu Qiancheng12,Wang Jinyun3,Yu Xulong1,Wang Zhici1,Hu Zhiyong1

Affiliation:

1. The College of Computer Science and Engineering, North Minzu University, Ningxia 750021, China

2. The Key Laboratory of Images and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China

3. The School of Business, North Minzu University, Ningxia 750021, China

Abstract

Short-to-medium-term electric load forecasting is crucial for grid planning, transformation, and load scheduling for power supply departments. Various complex and ever-changing factors such as weather, seasons, regional economic structures, and enterprise production cycles exert uncontrollable effects on the electric grid load. While the causal convolutional neural network can significantly enhance long-term sequence prediction, it may suffer from problems such as vanishing gradients and overfitting due to extended time series. To address this issue, this paper introduces a new power load data anomaly detection method, which leverages a convolutional neural network (CNN) to extract temporal and spatial information from the load data. The features extracted are then processed using a bidirectional long short-term memory network (BiLSTM) to capture the temporal dependencies in the data more adeptly. An enhanced random forest (RF) classifier is employed for anomaly detection in electric load data. Furthermore, the paper proposes a new model framework for electricity load forecasting that combines a dilated causal convolutional neural network with ensemble learning. This combination addresses issues such as vanishing gradients encountered in causal convolutional neural networks with long time series. Extreme gradient boosting (XGBoost), category boosting (CATBoost), and light gradient boosting machine (LightGBM) models act as the base learners for ensemble modeling to comprehend deep cross-features, and the prediction results generated by ensemble learning serve as a new feature set for secondary ensemble modeling. The dilated convolutional neural network broadens the receptive field of the convolutional kernel. All acquired feature values are concatenated and input into the dilated causal convolutional neural network for training, achieving short-to-medium-term electric load forecasting. Experimental results indicate that compared to existing models, its root mean squared error (RMSE) and mean squared error (MSE) in short-term and mid-term electricity load forecasting are reduced by 4.96% and 12.31%, respectively, underscoring the efficacy of the proposed framework.

Funder

2022 Ningxia Autonomous Region Key Research and Development Plan (Talent Introduction Special) Project

Ningxia Key Research and Development Plan

The 2022 University Research Platform “Digital Agriculture Empowering Ningxia Rural Revitalization Innovation Team” of North Minzu University

The major key project of school-enterprise joint innovation in Yinchuan 2022

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3