TwSense: Highly Robust Through-the-Wall Human Detection Method Based on COTS Wi-Fi Device

Author:

Zhang Zinan1,Hao Zhanjun12ORCID,Dang Xiaochao12,Han Kaikai1

Affiliation:

1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China

2. Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China

Abstract

With the popularization of Wi-Fi router devices, the application of device-free sensing has garnered significant attention due to its potential to make our lives more convenient. Wi-Fi signal-based through-the-wall human detection offers practical applications, such as emergency rescue and elderly monitoring. However, the accuracy of through-the-wall human detection is hindered by signal attenuation caused by wall materials and multiple propagation paths of interference. Therefore, through-the-wall human detection presents a substantial challenge. In this paper, we proposed a highly robust through-the-wall human detection method based on a commercial Wi-Fi device (TwSense). To mitigate interference from wall materials and other environmental factors, we employed the robust principal component analysis (OR-PCA) method to extract the target signal of Channel State Information (CSI). Subsequently, we segmented the action-induced Doppler shift feature image using the K-means clustering method. The features of the images were extracted using the Histogram of Oriented Gradients (HOG) algorithm. Finally, these features were fed into an SVM classifier (G-SVM) optimized by a grid search algorithm for action classification and recognition, thereby enhancing human detection accuracy. We evaluated the robustness of the entire system. The experimental results demonstrated that TwSense achieved the highest accuracy of 96%.

Funder

National Natural Science Foundation of China

Key Science and Technology Support Program of Gansu Province

2019 Chinese Academy of Sciences “Light of the West” Talent Program, Science and Technology Innovation Project of Gansu Province

2019 Lanzhou City Science and Technology Plan Project

2020 Lanzhou City Talent Innovation and Entrepreneurship Project

Gansu Provincial Department of Education: Industry Support Program Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3