A Combinatory Framework for Link Prediction in Complex Networks

Author:

Dimitriou Paraskevas1ORCID,Karyotis Vasileios1ORCID

Affiliation:

1. Department of Informatics, Ionian University, 49100 Corfu, Greece

Abstract

Link prediction is a very important field in network science with various emerging algorithms, the goal of which is to estimate the presence or absence of an edge in the network. Depending on the type of network, different link prediction algorithms can be applied, being less or more effective in the relevant scenarios. In this work, we develop a novel framework that attempts to compose the best features of link prediction algorithms when applied to a network, in order to have even more reliable predictions, especially in topologies emerging in Industrial Internet of Things (IIoT) environments. According to the proposed framework, we first apply appropriate link prediction algorithms that we have chosen for an analyzed network (basic algorithms). Each basic algorithm gives us a numerical estimate for each missing edge in the network. We store the results of each basic algorithm in appropriate structures. Then we provide them as input to a developed genetic algorithm. The genetic algorithm evaluates the results of the basic algorithms for each missing edge of the network. At each missing edge of the network and from generation to generation, it composes the estimates of the basic algorithms regarding each edge and produces a new optimized estimate. This optimization results in a vector of weights where each weight corresponds to the effectiveness of the prediction for each of the basic algorithms we have employed. With these weights, we build a new enhanced predictor tool, which can obtain new optimized estimates for each missing edge in the network. The enhanced predictor tool applies to each missing edge the basic algorithms, normalizes the basic algorithms’ estimates, and, using the weights of the estimates derived from the genetic algorithm, returns a new estimate of whether or not an edge will be added in the future. According to the results of our experiments on several types of networks with five well-known link prediction algorithms, we show that the new enhanced predictor tool yields in every case better predictions than each individual algorithm, therefore providing an accuracy-targeting alternative in the existing state of the art.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3