Multi-Intent Natural Language Understanding Framework for Automotive Applications: A Heterogeneous Parallel Approach

Author:

Li Xinlu1ORCID,Zhang Lexuan1,Fang Liangkuan1,Cao Pei1

Affiliation:

1. School of Artificial Intelligence and Big Data, Hefei University, Hefei 230061, China

Abstract

Natural language understanding (NLU) is an important aspect of achieving human–machine interactions in the automotive application field, consisting of two core subtasks, multiple-intent detection, and slot filling (ID-SF). However, existing joint multiple ID-SF tasks in the Chinese automotive domain face two challenges: (1) There is a limited availability of Chinese multi-intent corpus data for research purposes in the automotive domain; (2) In the current models, the interaction between intent detection and slot filling is often unidirectional, which ultimately leads to inadequate accuracy in intent detection. A novel multi-intent parallel interactive framework based on heterogeneous graphs for the automotive applications field (Auto-HPIF) was proposed to overcome these issues. Its improvements mainly include three aspects: firstly, the incorporation of the Chinese bidirectional encoder representations from transformers (BERT) language model and Gaussian prior attention mechanism allow each word to acquire more comprehensive contextual information; secondly, the establishment of a heterogeneous graph parallel interactive network efficiently exploits intent and slot information, facilitating mutual guidance; lastly, the application of the cross-entropy loss function to the multi-intent classification task enhances the model’s robustness and adaptability. Additionally, a Chinese automotive multi-intent dataset (CADS) comprising 13,100 Chinese utterances, seven types of slots, and thirty types of intents were collected and annotated. The proposed framework model demonstrates significant improvements across various datasets. On the Chinese automotive multi-intent dataset (CADS), the model achieves an overall accuracy of 87.94%, marking a notable 2.07% enhancement over the previous best baseline. Additionally, the model performs commendably on two publicly available datasets. Specifically, it showcases a 3.0% increase in overall accuracy on the MixATIS dataset and a 0.7% improvement on the MixSNIPS dataset. These findings showcase the efficacy and generalizability of the proposed model in tackling the complexity of joint multiple ID-SF tasks within the Chinese automotive domain.

Funder

Graduate Innovation Project of Hefei University

NSFC

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3