Thermal Stress Compensation for an Aircraft Engine Duct System Based on a Structural Redesign of Tie Rods

Author:

Li Xinghai1,Feng Kai1,Yuan Jie2,Wang Rui3,Yang Kaijie2,Zheng Rentong3,Wang Yansong2

Affiliation:

1. Shenyang Engine Research Institute, Aero Engine Corporation of China (AECC), Shenyang 110015, China

2. College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

3. School of Energy & Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Abstract

The reliability of the aircraft engine duct system is of paramount importance as it directly affects the safety of the aircraft, particularly under high-temperature and high-pressure cycles. In this study, ANSYS Workbench was used for finite element analysis, and a sleeve-type tie rod structure was proposed to address the critical problem of tie rod tearing during the operation of the duct system, thereby optimizing thermal stress compensation for the duct system. The research results show the following: (1) The anchor of the traditional tie rod imposes displacement constraints on the thermal deformation of the duct system, leading to stress concentration and even structural failure in the connection area between a duct and a tie rod. (2) The improved sleeve-type tie rod provides greater axial displacement freedom for the duct, effectively mitigating stress concentration phenomena. (3) Taking a worst-case scenario of 537.78 °C and 2 MPa as an example, the sleeve-type tie rod proposed in this paper can reduce the stress at the tie rod connection from 757.61 MPa to less than 25 MPa, a reduction of more than 96%. The original tie rod tearing problem is solved, and the maximum stress of the whole duct system is reduced to 459.25 MPa, which is below the yield strength.

Funder

Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics and Astronautics

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3